On Log-concavity of a Class of Generalized Stirling Numbers
نویسنده
چکیده
This paper considers the generalized Stirling numbers of the first and second kinds. First, we show that the sequences of the above generalized Stirling numbers are both log-concave under some mild conditions. Then, we show that some polynomials related to the above generalized Stirling numbers are q-log-concave or q-log-convex under suitable conditions. We further discuss the log-convexity of some linear transformations related to generalized Stirling numbers of the first kind.
منابع مشابه
Log-concavity of Stirling Numbers and Unimodality of Stirling Distributions
A series of inequalities involving Stirling numbers of the first and second kinds with adjacent indices are obtained. Some of them show log-concavity of Stirling numbers in three different directions. The inequalities are used to prove unimodality or strong unimodality of all the subfamilies of Stirling probability functions. Some additional applications are also presented.
متن کاملStirling Numbers and Generalized Zagreb Indices
We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.
متن کاملInductive concavity
Sagan, B.E., Inductive proofs of q-log concavity, Discrete Mathematics 99 (1992) 289-306. We give inductive proofs of q-log concavity for the Gaussian polynomials and the q-Stirling numbers of both kinds. Similar techniques are applied to show that certain sequences of elementary and complete symmetric functions are q-log concave.
متن کاملOn the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers
In this paper, we discuss the properties of the hyperfibonacci numbers F [r] n and hyperlucas numbers L [r] n . We investigate the log-concavity (log-convexity) of hyperfibonacci numbers and hyperlucas numbers. For example, we prove that {F [r] n }n≥1 is log-concave. In addition, we also study the log-concavity (log-convexity) of generalized hyperfibonacci numbers and hyperlucas numbers.
متن کاملCombinatorial proofs of inverse relations and log-concavity for Bessel numbers
Let the Bessel number of the second kind B(n, k) be the number of set partitions of [n] into k blocks of size one or two, and let the Bessel number of the first kind b(n, k) be the coefficient of x in −yn−1(−x) , where yn(x) is the nth Bessel polynomial. In this paper, we show that Bessel numbers satisfy two properties of Stirling numbers: The two kinds of Bessel numbers are related by inverse ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 19 شماره
صفحات -
تاریخ انتشار 2012